Long Luo (gk5120)

University information

Title: Associate Professor
Unit: Chemistry
Department: College of Liberal Arts & Science

Contact information

801-935-
5101 Cass Ave
Room 383
Detroit, 48202

College of Liberal Arts and Sciences

Department:

Chemistry

Title: The Carl R. Johnson Associate Professor
Phone: 313-577-0690
Office:

Chem 383

Curriculum Vitae: https://people.wayne.edu/profile/gk5120/1578/cv.pdf 525419 1654781484 file
Website: https://s.wayne.edu/luogroup
Social Media: https://twitter.com/lab_luo
Research interest(s)/area of expertise:

Electrocatalysis, electroanalysis, and electrosyntheis. 

Research:

Research in the Luo group is focused on exploring new frontiers in electrocatalytic and electroanalytical sciences.

Electrogenerated bubbles

The formation and evolution of vapor and gas bubbles in a liquid body is a phenomenon of vast fundamental and applicative interest, for example, in commercial electrolytic processes, in cavitation, in the effervescence of carbonated beverages such as sparkling wine, beer and soft drinks, and in electric power generation during the production of high pressure steam. We are interested in developing new tools and methods to understand the fundamentals of bubble formation process, to evaluate its impacts on electrochemical systems, and to use this phenomenon to improve the performance of sensing devices and electrocatalytic systems.

Electrochemical synthesis

Electrochemical synthesis is a powerful tool for surface modification, substrate cleaning, and formulation of thin films and bulk materials because it offers an additional level of control over the synthesis relative to its chemical counterpart by fine-tuning mass transfer, potential, or current. In addition, electrochemical synthesis allows the convenient analysis of chemical reaction kinetics using the current signal generated during the synthesis. We are interested in developing new electrochemical methods to synthesize functional materials and to understand the reaction mechanisms.

Electrokinetic phenomena

Electricity not only drives chemical reactions but also the motion of ions and liquid. Common electrokinetic phenomena include electrophoresis, electroosmosis, streaming potential/current, etc. We are interested in the design and use of new electrokinetic phenomena for preconcentration and separation of analytes.

Education – Degrees, Licenses, Certifications: B.S. Beijing University of Aeronautics and Astronautics (2005-2009) Ph.D. the University of Utah (2011-2014) Postdoc the University of Texas at Austin (2014-2017)
Awards and grants:
• Inaugural Carl Johnson Early Career Professorship, Aug. 2022
• Nanoscale 2022 Emerging Investigators, 2021
• NIH Maximizing Investigators' Research Award (MIRA), 2021
• Wayne State University Academy of Scholars Junior Faculty Award, 2020-21
• NSF CAREER Award, 2020
• The Langmuir inaugural Early Career Advisory Board Member
• Young Professional & Early Career Travel Award, The Electrochemical Society, 2019
• Taylor Young Investigator Travel Award, the Midwestern Universities Analytical Chemistry Conference (MUACC), 2018, 2021
• Ebbing Faculty Development Award, Wayne State University, 2017, 2021
 

 

Selected publications:
  • Rodrigo, S.; Um, C.; Mixdorf, J. C.; Gunasekera, D.; Nguyen, H. M.; Luo, L., Alternating Current Electrolysis for Organic Electrosynthesis: Trifluromethylation of (Hetero)arenes. Org. Lett. 2020, 22 (17), 6719-6723. (Featured on the supplementary journal cover)
  • Hewa-Rahinduwage, C. C.; Geng, X.; Silva, K. L.; Niu, X.; Zhang, L.; Brock, S. L.; Luo, L., Reversible Electrochemical Gelation of Metal Chalcogenide Quantum Dots. J. Am. Chem. Soc. 2020, 142 (28), 12207-12215. (Featured on the supplementary journal cover)
  • Cao, Y.; Lee, C.; Davis, E. T. J.; Si, W.; Wang, F.; Trimpin, S.; Luo, L., 1000-Fold Preconcentration of Per- and Polyfluorinated Alkyl Substances (PFAS) within 10 min via Electrochemical Aerosol Formation. Anal. Chem. 2019, 91 (22), 14352-14358. (Featured on the supplementary journal cover)
  • Ranaweera, R.; Ghafari, C.; Luo, L., Bubble Nucleation-Based Method for the Selective and Sensitive Electrochemical Detection of Surfactants. Anal. Chem. 2019, 91 (12), 7744-7748. (Highlighted by C&EN News, Nature Nanotechnology and x-mol.com, Featured on the supplementary journal cover)
  • Zhao, X.; Ranaweera, R.; Luo, L., Highly Efficient Hydrogen Evolution of Platinum via Tuning Interfacial Dissolved-Gas Concentration. Chem.Commun. 2019, 55 (10), 1378-1381. (Featured on the back cover)
Citation index:

Google Scholar

 https://scholar.google.com/citations?user=tSCnB28AAAAJ&hl=en

Long Luo

Courses taught by Long Luo

Winter Term 2024

Fall Term 2023

Winter Term 2023

Fall Term 2022

Winter Term 2022

Recent university news spotlights

Return to Search