Wen Li (au8070)

University information

Title: Professor
Unit: Chemistry
Department: College of Liberal Arts & Science

Contact information

169 Chemistry
Chemistry
Liberal Arts & Sciences
Detroit, 48202

College of Liberal Arts and Sciences

Department:

Chemistry

Title: Professor
Phone: 313-577-8658
Fax: 313-577-8822
Office:

Chem 63

Website: http://atto.wayne.edu
Research interest(s)/area of expertise:
  • Ultrafast molecular dynamics
  • High harmonic generation
  • Attosecond spectroscopy
  • Photoemission
  • Surface dynamics and 3D momentum imaging
Research:

Professor Wen Li's research interests lie in developing and applying novel probes to study reaction dynamics at their most detailed level. The goal of our research is to understand, predict and eventually control a chemical reaction in the most effective way. The probes include strong field ionization and ultrashort electron and photon pulses produced from high order harmonic generation (HHG).

HHG itself is also a strong field process that can be described semi-classically using a three-step model:

  1. Ionization of a bound electron from an atom by a strong laser field
  2. Propagation and acceleration of the electron in the laser field
  3. Recombination of the electron with the ion core to emit high energy photons.

Both the 'recombining' electron and the emitted photon can be used to probe chemical dynamics. Due to the intrinsic ultrafast property of HHG, the pulse duration of the photon and electron can be as short as a few tens of attoseconds (10-18s). These fast pulses enable us for the first time to directly probe the attosecond dynamics of the electrons, which play a dominant role in reactions relevant to physics, chemistry and biology.

Three main projects in Li lab

  • High harmonic generation (HHG) probes of molecular dynamics. Using the coherent recombining electrons in the process of HHG, one can monitor ultrafast nuclear and electronic dynamics. An example of this research direction was highlighted in a Science research article. We plan to pursue this study further by looking into the electronic dynamics of ions while the electron is away in the continuum.
  • Production and characterization of intense attosecond pulse trains (APTs) with pulse durations as short as 150 attoseconds.
  • Probing attosecond electronic dynamics with APTs using two-photon attosecond spectroscopy. The systems of interest include correlated double ionization, charge transfer in polyatomics and photoionization induced electron relaxation.

These studies should reveal many details of the electron dynamics and provide an experimental tool capable of controlling electronic dynamics at the attosecond level. The experimental results also provide benchmarks for theoretical methods dealing with multi-electron and multi-dimension problems.

Education – Degrees, Licenses, Certifications: B.S., Peking University (China), 2000 Ph.D., Stony Brook University, 2006 Research Associate, JILA, University of Colorado/NIST, 2006-2009
Selected publications:
  • L. Fan, S. K. Lee, P. Y. Chen and W. Li, “Observation of nanosecond hot carrier decay dynamics in graphene”, J. Phy. Chem. Lett., 2018, 9, 1485
  • A. H. Winney, G. Basnayake, D. A. Debrah, Y. F. Lin, S. K. Lee, P. Hoerner, Q. Liao, H. B. Schlegel and W. Li, “Disentangling strong field multi-electron dynamics with angular streaking”, J. Phys. Chem. Lett., 2018, 9, 2539 (Invited Perspective, Cover and ACS Editor’s Choice)
  • W. K. Peters, D. E. Couch, B. Mignolet, X. Shi, Q. L. Nguyen, R. C. Fortenberry, H. B. Schlegel, F. Remacle, H. C. Kapteyn, M. M. Murnane and W. Li, “Ultrafast 25 fs relaxation in highly excited states of methyl azide mediated by strong nonadiabatic coupling”, Proc. Natl. Acad. Sci., 2017, 114, E11072 
  • A. H. Winney, S. K. Lee, Y. F. Lin, P. Adhikari, H. B. Schlegel and W. Li, “Attosecond electron correlation dynamics in double ionization of benzene probed with two-electron angular streaking”, Phys. Rev. Lett., 2017, 119, 123201
  • T. N. Herath, Y. Lu, S. K. Lee and W. Li, "Strong field ionization depends on the sign of the magnetic quantum number", Phys. Rev. Lett. 2012, 109, 043004
  • S. K. Lee, Y. F. Lin, L. Yan, W. Li, "Laser-induced low-energy electron diffraction in aligned molecules", J. Phys. Chem. A, 2012, 116, 1950
  • W. Li, A. A. J-B, C. W. Hogle, V. Sharma, X. B. Zhou, H. C. Kapteyn and M. M. Murnane, "Visualizing electron rearrangement during the transition from a molecule to atoms", Proc. Natl. Acad. Sci. U.S.A, 2010, 107, 20219
  • W. Li*, X.B. Zhou, S. Patchkovskii, R. Lock, A. Stolow, H. C. Kapteyn and M. M. Murnane, "Time-resolved dynamics in N2O4 probed with high harmonic generation", Science 2008, 322, 1207
  • I. Thomann, R. Lock, V. Sharma, E.Gagnon, S. Pratt, H.C. Kapteyn, M. M. Murnane and W. Li*, "Direct measurement of the angular dependence of the single-photon ionization of aligned N2 and CO2", J. Phys. Chem. A. 2008, 112, 9382
  • W. Li, R. R. Lucchese, A. Doyuran, Z. Wu, H. Loos, G. E. Hall, A. G. Suits, "Superexcited state dynamics probed with an Extreme-Ultraviolet Free Electron Laser," Phys. Rev. Lett. 2004, 92, 83002
Citation index:
Wen Li

Courses taught by Wen Li

Winter Term 2025 (future)

Fall Term 2024

Winter Term 2024

Winter Term 2023

Recent university news spotlights

Return to Search